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Abstract

Digital Mammograms are x-ray images of the breast
and one of the preferred early detection methods for
breast cancer. However, mammograms are still dif-
ficult to interpret, and associated with this problem
is a high percentage of unnecessary biopsies, misdiag-
noses and late detections.

The focus of this research is to use neuro-
evolutionary mechanisms for detecting breast cancer
from mammographic images. The aim is to design
a sophisticated classification tool that detects breast
cancer at its early stages, so that treatment has a
better chance of success.

Wavelet neural networks have the ability to cap-
ture and extract information at various frequency lev-
els by using different dilation and scaling values of
the wavelet function. In this work, the wavelet neu-
ral network parameters are evolved using on the con-
cept of Cartesian Genetic Programming, resulting in
an evolved neural network which is trained for mass
diagnosis.

In the reported study the proposed algorithm
achieves a classification accuracy of 89.57% on a real
dataset composed of 200 images. Such a computer-
based classification system has the potential to pro-
vide a second opinion to the radiologists, thus assist-
ing them to diagnose the malignancy of breast cancer
more precisely.

Keywords: Breast Cancer, Mammography, Cartesian
Genetic Programming, Evolution, Neural Networks,
Wavelet Neural Networks, Neuroevolution

1 Introduction

Breast cancer is the second leading cause of cancer-
related deaths in Australian women, accounting for
15.5% of them. It is estimated that one in eight Aus-
tralian women will be diagnosed with the disease be-
fore the age of 85 (Breast Cancer Care WA; accessed
June 2014).

Digital mammograms are digital x-ray images of
the breast; and regularly used for cancer screening.
It is one of the earliest and most reliable detection
methods, with cancer being indicated by the pres-
ence of a microcalcification - calcium deposit within
the breast tissue or masses. The identification and as-
sessment of potentially cancerous areas is a tedious,
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time-consuming and challenging task, which requires
specialised expertise. Such assessments might also
lead to misdiagnosis, which is why Computer Aided
Detection (CAD) systems provide a valuable second
opinion for the classification of suspicious areas as
cancerous (malignant) or non-cancerous (benign).

Artificial Neural Networks (ANN) are a com-
putational model represented by simulated neurons
(called units) with weighted connections between
them. There are a number of evolutionary algorithms
devised in the past decade with different strategies of
evolving either connection weights, network topology,
or both (this last case known as TWEANN – Topol-
ogy and Weight Evolving Artificial Neural Networks).
An important example of such evolving networks is
the NEAT (Neuroevolution of Augmented Topology),
proposed by (Stanley & Miikkulainen 2002). The al-
gorithm has the capability to evolve both structures
and weights depending on the complexity of the prob-
lem, and is not dependent on a predefined network
structure. Also the recently proposed neuroevolu-
tionary algorithm namely ANN evolved via Cartesian
Genetic Programming (CGPANN) has also been ap-
plied on different domains of engineering with suc-
cess (Khan et al. 2013).

Standard classifiers like Support Vector Machines
and Multilayer Perceptron, despite their success in
many domains, display some limitation on varying
complex tasks, e.g. intelligent control, language
learning, etc (Byun & Lee 2002, Muhlenbein 1990).
Wavelets - referred to as a ‘microscope’ in mathe-
matics (Cao et al. 1995), act as high compression
nodes that represent non-linearities effectively (Fang
& Chow 2006). Wavelet neural network has been
applied on a variety of problems with great success,
e.g. time-series analysis and prediction (Cao et al.
1995, Chen et al. 2006), signal de-noising (Zhang
2007), classification and compression (Kadambe &
Srinivasan 2006, Subasi et al. 2005), density estima-
tion (Hasiewicz 1997), non-linear modelling (Billings
& Wei 2005), etc. Cartesian Genetic programming
has been used particularly in digital circuit opti-
mization(Miller & Thomson 2000). In this research
the wavelet neural network parameters are evolved
using the Cartesian Genetic Programming so that
the evolved wavelet neural network benefits from the
strength of wavelets and overcome the limitations
of standard classifiers; thus possibly contributing to
classification, prediction and control problems.

Our research focuses on the development of a novel
neuroevolutionary algorithm not only to classify mass
abnormalities identified in digital mammograms; as-
sessing its potential to be a part of a high-confidence
CAD system for diagnosis, but also to exploit it fur-
ther in the intelligent control domain. For this reason
the potential of the algorithm is first tested on a well-



researched and a reasonably challenging dataset, that
has been used by many researchers (McLeod & Verma
2013b, Zhang et al. 2010, Verma et al. 2009a). The
dataset is also tested on two existing neuroevolution-
ary algorithms, namely ANN evolved via Cartesian
Genetic Programming and Neuroevolution in Aug-
mented Topology.

The remainder of the paper is divided into five
sections. Section 2 describes Cartesian Genetic
Programming (CGP) and the proposed algorithm -
Wavelet Neural Networks evolved via CGP. Section
3 highlights the dataset for cancer detection and the
literature review surrounding that database. Section
4 describes the methodology, followed by analysis and
discussion of the results. Finally, Section 6 concludes
the paper.

2 Background

2.1 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) (Miller &
Thomson 2000) is an evolutionary programming tech-
nique used particularly for digital circuits optimisa-
tion. CGP genotypes are of finite length and have an
integer representation, where genes represent nodes
and each node corresponds to sets of input genes and
a function. The input genes can be a program in-
put, or outputs of other nodes. Functions are either
logical or arithmetical e.g. AND, OR, addition, sub-
traction, etc. The output of the genotype is either a
node output or the program input itself.

There are two basic types of evolution strategies
(µ, λ)-ES and (µ + λ)-ES (Beyer & Schwefel 2002).
µ represents the number of parent population and λ
refers to the number of offspring produced in a gen-
eration. In (µ, λ) offspring replaces the parent as the
fittest is selected from λ, while in (µ + λ)-ES the
fittest is selected from both parents and offspring for
the next generation. Cartesian Genetic programming
uses the (1 + λ) strategy, where λ = 4, is commonly
adopted. i.e. a single parent is mutated based on a
mutation rate ‘τ ’ to produce 4 offsprings.

Figure 1(a) is an example of a finite length geno-
type with two inputs (x0, x1) and one output, where
the encircled number represents the output. It rep-
resents a 2 × 2 architecture i.e. it has 2 rows and 2
columns. The number of inputs to each node is 2. The
functions used are the logical OR and AND gates, dis-
played as f0 and f1, respectively. Figure 1(b) is the
graphical representation of the genotype. The graph
represents active and inactive nodes. Inactive nodes
are nodes that do not participate in the output com-
putational process (shown in light grey). Based on
the output x5, the phenotype of the corresponding
genotype is shown in Figure 1(c).

2.2 Cartesian Genetic Programming Wavelet
Neural Network (CGPWNN)

Wavelet Neural Networks have three layers, namely
input, hidden and output layers. The input layer rep-
resents the input to the network. The hidden layer
consists of wavelet neurons ψ, known as wavelons,
with scaling α and translation β parameters, as shown
in Figure 2(a). Therefore, the input presented to the
wavelons are scaled and translated, which transforms
the input pattern. The output layer approximates, or
sums the input coming from the hidden layer. Each
output from the hidden layer is multiplied by a weight
wi, where i corresponds to the wavelet neuron index.
There are a number of wavelet functions ψ that can be

Figure 1: (a) An example of a 2 × 2 CGP genotype
with 2 inputs and 1 output. (b) Graphical represen-
tation of the genotype in (a). (c) Phenotype corre-
sponding to the genotype in (a).

used, e.g. Gaussian derivative, Mexican hat, Morelet,
Haar, etc. The choice of wavelet used in the applica-
tion depends on the system itself. The structure of
a single hidden layer wavelet network is displayed in
Figure 3. The output of the network is mathemati-
cally expressed in Eq. (1):

y(x) = θ +

m∑
i=1

wiψi(x) +

n∑
j=1

cjxj (1)

where θ is the bias to the output neuron and cjxj
represents the direct connection of input to the output
representing a linear model (Alexandridis & Zapranis
2013).

The CGP representation has been used to evolve
artificial neural networks previously (Khan et al.
2013). Similarly, in the current paper we will use
the CGP representation, but to evolve wavelet neural
networks. A node in CGP corresponds to a wavelet
neuron in CGPWNN. Figure 2(b) shows a wavelon
of CGPWNN. The genes that make up a wavelon in-
clude: input xij , connection cij , motherwavelet ψ,
translation β and scale α where xij = [1, number of
program inputs], cij = {0, 1}, ψ = [1, number of
wavelet functions], β = [0, 1] and α = [0, 1] respec-
tively. The input and connection genes occur in pairs,
i.e. if the input to a wavelon is 2, then it would con-
stitute two inputs and two connection genes.

Figure 2: (a) Diagram of a Standard Wavelet Neuron.
(b) CGPWNN-Wavelet Neuron.



Figure 4: (a) A 3 × 1 example genotype of CGPWNN. (b) Graphical representation of the genotype. (c)
Random values assigned to (a). (d) Graphical representation of the genotype with assigned random values
from (c). (e) Phenotype of (d). (f) Mathematical representation of phenotype.

Figure 3: Structure of a Wavelet Neural Network.

Figure 4(a) is an example of a 3 × 1 CGPWNN
genotype with two inputs: x0 and x1. The number
of inputs to each wavelet neuron is 2. The number
of outputs from the network is also 2, i.e. x3 and x4.
The wavelet functions used are Gaussian, Mexican
hat and Haar, labelled as ψ1, ψ2 and ψ3, respectively.
The bias gene is incorporated at the end of the geno-
type, and marked as θ. Figure 4(b) is the graphical
representation of such genotype. The number at the
top right corner of each wavelet neuron corresponds
to the node index. Suppose that we assign random
values to the genes, as shown in Figure 4(c). In that
case, its graphical representation is displayed in Fig-
ure 4(d). The phenotype of the assigned genotype is
Figure 4(e), and can be mathematically expressed as
in Figure 4(f).

3 Case study: Mass classification

Classifying suspicious areas in digital mammograms is
a crucial, difficult problem, and one of the significant
processes for the early detection of breast cancer. In
the current paper we are investigating one of the chal-
lenging and publically available benchmark datasets
for breast cancer diagnosis using evolutionary neural
networks. In this section we shall discuss in detail
the features used for mass classification and the asso-
ciated literature survey.

3.1 Database and features utilized

The Digital Database for Screening Mammography
(DDSM), from the University of South Florida, is
an online repository of mammographic images col-
lected from different hospitals, with different resolu-
tions (Digital Database for Screening Mammography;
accessed May 2014, Heath et al. 1998, 2001). The sus-
picious regions are manually marked on the film by
two experienced radiologists. These regions are rep-
resented as chain codes which can be easily extracted
from the image file for further analysis.

A total of 25 features are extracted from the re-
gions marked on the mammographic images scanned
on the HOWTEK scanner, at 43.5 micron per pixel
spatial resolution (Kumar, Zhang, & Verma 2006).
The feature set includes 18 grey level features, based
on the grey level pixel values of suspicious areas us-
ing the statistical formulas shown in Table 1 (where
T = total number of pixels; g = index value of im-
age I; k = number of grey levels (4096); I(g) = grey
level of pixel g in image I; and P (g) is the proba-



bility of the grey level g occurring in image I. Also,
each case in DDSM contains information specified by
an expert radiologist using BIRADS (Breast Imaging
Reporting and Data System) lexicon. The four BI-
RADS attributes are density, mass shape, mass mar-
gin and assessment. Patient age and subtlety values
are also extracted from each mammographic record,
while calcification association is added by (Kumar,
Zhang & Verma 2006). Those 7 features are human
interpreted. The list of features along with their de-
scriptions is shown in Table 1.

3.2 Literature Survey

There are many research papers surrounding breast
cancer diagnosis and classification. The following lit-
erature focuses on research that used the dataset fea-
tures reported above, for the purpose of comparing
results. In 2005, (Zhang, Kumar & Verma 2005) pro-
posed a hybrid classifier that used statistical clas-
sifiers (Logistic Regression (LR) and Discriminant
Analysis (DA)) output probabilities as second order
features, combined in a feature set with other 14 grey
level and 6 human extracted features. The modified
feature set was then tested on several classifiers, in-
cluding neural networks, and genetic neural networks,
with 3 random splits of the dataset. A maximum
accuracy of 91% for the LRDA-GNN classifier was
obtained. Furthermore, in their papers, (Zhang &
Kumar 2006) statistically analyzed the various fea-
tures using SPSS, and 4 key features (assessment, age,
margin and shape) were identified. They were then
used in conjunction with neural networks and deci-
sion trees (CART) (Breiman et al. 1984, Steinberg
& Colla 1997, Steinberg & Golovnya 2006) and C5.0
(Quinlan 1993, RuleQuest-Research 2014) for classi-
fication purposes. Accuracy was higher in compari-
son to using the whole feature subset, which meant
that feature extraction improved the performance of
the classification. Also, they proposed that using
Logistic Regression alone on the 7 human extracted
features attains high classification accuracy, with an
AUC (area under curve) of 0.979 (Zhang et al. 2010).

(Panchal & Verma 2006) exploited different fea-
ture subsets in terms of its classification accuracy us-
ing auto associative and classifier neural networks. A
total of 14 grey level, 4 BIRADS, plus patient age
and subtlety features were selected, and subsequently
divided into six feature subsets. The main objective
behind the research was to identify key features in
breast cancer detection. The study determined that
grey level and BIRADS features perform better, with
a training accuracy of 100% and testing accuracy of
92%. Training and testing was done using a 50/50
data split.

(Kumar, Zhang, & Verma 2006) used decision
trees (CART and C5.0) at different cost ratios for
mass classification on the whole feature set. Data
was also split 50/50 for training and testing. Results
showed a maximum of 91% accuracy, for a cost ratio
of 1:1 using CART; at the cost of a higher standard
deviation.

Verma’s series of works introduced a number of
algorithms for classifying the mass dataset (Verma
2008, Verma et al. 2009b,a). In one of those, an
additional neuron in the hidden layer was proposed
(based on the number of classes), improving both the
memorization and generalization ability of the net-
work. A different training mechanism for the addi-
tional neurons was also devised. Based on that ap-
proach, the training and testing accuracy improved
to 100% and 94% respectively, where the classifier
was trained and tested on a 50/50 data split using 6

of the human extracted features. Also, Verma intro-
duced two soft cluster-based neural networks, where
the clusters were formed within a neural network layer
i.e. SCBDL (soft cluster based direct learning) &
SCNN (soft cluster neural network). By using 10-fold
cross validation with both algorithms, a maximum
of 94% in SCNN and 95% in SCBDL accuracy was
achieved. A comparison with other clustering algo-
rithms (SVM, K-means and SOM) showed accuracies
of 86.5%, 84.5% and 76%, respectively.

In 2011, (McLeod & Verma 2011) proposed a
multi-cluster support vector machine for mass clas-
sification. The K-means algorithm was used to gen-
erate the clusters for benign and malignant classes.
The resulting clusters were then used for classification
on a standard SVM. The MCSVM obtained an aver-
age accuracy of 94.5%, while standard SVMs reached
87.5% using 10-fold cross validation and 6 human ex-
tracted features. McLeod also observed an approxi-
mate increase of 3% in accuracy using the same clus-
ter based approach on other classifiers, namely ra-
dial basis function networks and multilayer percep-
trons (McLeod & Verma 2010). The accuracy of
the classifiers were improved further by using neu-
ral network ensemble classifiers in (McLeod & Verma
2012a,b, 2013a,b). The networks in the ensemble
varied the number of neurons in the hidden layer,
between 2 to 150 neurons. The maximum num-
ber of classifiers in the ensemble was limited to 40
in (McLeod & Verma 2012b), and 202 in (McLeod &
Verma 2013a). A 10-fold cross validation was used for
testing the methods. The final ensemble network was
composed of 127 classifiers, which attained an accu-
racy of 99%. It is noteworthy that in order to classify
200 data rows a total of 127 classifiers was needed.
Similar improvement was observed in an LCA ensem-
ble (94%), compared to LCA (87%) alone in (Pour
et al. 2012).

3.3 Training and testing sets

A total of 200 suspicious areas were manually ex-
tracted from the Digital Database for Screening Mam-
mography dataset. Half of those areas represented
benign tumours and the other half was malignant
(Zhang, Kumar & Verma 2005).

3.3.1 Training on 70% of the data

The first part of the experiment involved training and
testing the classifiers by splitting the dataset into 70%
and 30%, respectively, with equal contribution of be-
nign and malignant samples to each group. Similar to
Verma’s and McLeod’s studies, 6 human-interpreted
features were used in all of our experiments (breast
density, mass shape, mass margin, assessment, sub-
tlety and patient age).

3.3.2 10-fold cross validation

The second part of the simulation incorporated a 10-
fold cross validation strategy for testing the classifiers.
In that case, the dataset is divided into 10 subsets,
where 9 subsets are combined into a training set, and
the remaining subset is used as the test set. This is
repeated 10 times, always with a different selection
of subset for testing, and the average accuracy is re-
ported.

In this work, the classifier’s output is thresholded,
based on a threshold value of θ = 0, to classify the
samples as benign (0) or malignant (1). That is math-
ematically expressed by Eq. (2).



Table 1: Features and description of the Digital Database for the Screening Mammography (DDSM) dataset.
(Zhang, Verma & Kumar 2005)

Features Description

Grey Level Features

Minimum Grey Level Minimum grey level in the suspicious area
Maximum Grey Level Maximum grey level in the suspicious area
Perimeter of Suspicious Area Count of pixels at the boundary of the extracted area
Mean Boundary Grey Level BAG = Average Grey Level at the boundaries
Number of Pixels Count of pixels in extracted area

Mean Histogram AHg = (1/k)
k−1∑
j=0

N(j)/T

Energy Egy =
k−1∑
g=0

[P (g)]2

Entropy Etp = −
k−1∑
g=0

P (g)log2[P (g)]

Standard Deviation σ =

√
T−1∑
g=0

(g −AG)2P (g)

Skew Skw = (1/(σj)3)
k−1∑
g=0

(g −AG)3P (g)

Modified Energy MEgy =
T−1∑
g=0

[P (I(g))]2

Modified Entropy MEtp = −
T−1∑
g=0

P (g)log2[P (I(g))]

Modified Standard Deviation mσ =

√
T−1∑
g=0

(I(g) −AG)2P (I(g))

Modified Skew MSkw = (1/σ3
j )

T−1∑
g=0

(I(g) −AG)3P (I(g))

Kurtosis Kur = (1/(σj)4)
k−1∑
g=0

(g −AG)4P (g)

Mean Grey Level AG = 1/T
T−1∑
g=0

I(g)

Difference Dff = AG−BAG
Contrast Ctr = Dff/(AG+BAG)

Human Interpreted Features - BIRADS

Breast Density Density of breast tissue; rated 1-4
Abnormality Assessment Rank Seriousness of abnormality; rated 1-5
Mass Shape Morphological descriptor, e.g. round, oval, lobulated, irregular etc.; rated 1-9
Mass Margin Morphological descriptor, e.g. circumscribed, microlobulated, obscured etc.; rated 1-5

Human Interpreted Features - Others

Subtlety Subjective abnormality measure; rated 1-5

Patient Age Age of patient at the time of mammography

Calcification Association Relation of mass to calcification; categorized as yes or no

ClassifierOutput =

{
0, if Output ≥ θ
1, if Output < θ (2)

3.3.3 Performance measures

The performance of the classifiers is evaluated based
on the following metrics:

1. Training Accuracy (TrAcc): fraction of cor-
rectly trained samples.

2. Testing Accuracy (TeAcc): fraction of cor-
rectly classified samples as expressed in Eq. (3),
also known as the classification accuracy. The
higher the percentage, the better is the classifier
performance.

TeAcc =
(TP + TN)

P +N
(3)

where TP represents true positive cases, i.e. ac-
curate classification of benign samples; TN rep-
resents true negative cases, i.e. accurate classifi-
cation of malignant samples; and (P +N) is the
total number of positive and negative test sam-
ples.

3. Sensitivity (Sens): measurement of the frac-
tion of true positive cases, mathematically rep-
resented in Eq. (4):

Sens =
TP

(TP + FN)
(4)

where FN is the number of false negatives – Type
2 error – where the classification of a malignant
case as benign is a severe mistake.

4. Specificity (Spec) Statistical measurement of
the fraction of true negative cases mathemati-
cally represented as in Eq.(5):



Table 2: Performance of CGPANN with 70/30 split between training and testing samples. The best configura-
tion is with [1× 100], IE = 3 and Op = 4, indicated in bold. That configuration was then tested using 10-fold
cross-validation (bottom row).

Configuration Accuracy % Active Parameters

Structure IE Op TrAcc TeAcc(σ) Sens Spec Neurons(%) Features

1× 50
3 2 91.85 87.05(2.87) 83.31 91.73 18.13 4.53

4 92.83 87.83(3.28) 85.06 91.07 21.60 4.57

6
2 92.67 87.67(2.56) 85.02 90.74 32.33 5.70
4 93.57 87.72(3.63) 87.10 88.36 32.87 5.70

1× 100
3

4 92.59 89.11(2.84) 88.45 92.00 18.83 4.87
8 93.14 88.22(3.46) 87.63 88.82 25.90 5.23

6 4 92.90 87.61(2.90) 85.51 89.96 28.03 5.97
8 92.52 87.73(3.58) 86.28 89.30 43.63 6.00

Best configuration - 10-fold cross-validation

1× 100 3 4 92.57 87.15(5.24) 86.10 88.91 16.92 5.01

Table 3: Performance of CGPWNN & CGPWNN with linearity disabled on 70% Training and 30% Testing
Dataset. The best configuration indicated in bold was then tested using 10-fold cross-validation.

Configuration Accuracy % Active Parameters

Structure IE Op TrAcc TeAcc(σ) Sens Spec Wavelons(%) Features

CGPWNN

50 × 1

3
4 94.02 89.16(2.86) 84.00 96.19 7.93 4.33
8 93.47 87.67(3.32) 82.65 94.48 15.87 4.97
12 94.07 87.94(2.94) 83.57 93.61 23.33 5.67

6
4 93.02 88.27(3.48) 83.87 94.00 7.93 4.83
8 92.07 87.27(5.73) 82.16 94.31 15.60 5.87
12 93.78 88.61(3.16) 85.71 92.01 23.93 6.00

100 × 1

3
4 93.76 89.50(3.17) 84.61 95.98 3.97 4.10
8 93.45 88.27(3.23) 83.60 94.45 7.90 5.17
12 93.95 88.16(2.76) 83.64 94.09 11.87 5.60

6
4 93.80 89.57(2.85) 84.90 95.64 4.00 5.00
8 94.14 88.11(3.06) 83.96 93.41 8.00 5.97
12 93.97 88.61(1.82) 84.10 94.49 12.00 6.00

Best configuration - 10-fold cross-validation

100 × 1 6 4 92.99 88.60(4.83) 86.84 91.14 3.99 4.94

CGPWNN with linearity disabled

50 × 1

3
4 93.59 88.22(2.94) 84.60 92.67 8.00 3.93
8 94.30 89.57(3.64) 85.38 94.38 16.00 4.97
12 94.28 88.83(2.89) 85.41 92.98 24.00 5.60

6
4 93.47 87.89(2.68) 84.23 92.41 8.00 4.80
8 93.61 89.11(2.30) 85.12 94.11 16.00 5.70
12 93.83 88.89(3.25) 85.35 93.20 24.00 5.97

100 × 1

3
4 93.78 89.22(2.60) 85.22 94.23 4.00 3.87
8 94.59 88.27(3.23) 84.69 92.68 8.00 5.23
12 94.26 89.33(2.41) 85.40 94.25 12.00 5.60

6
4 93.59 88.67(2.63) 83.72 95.31 4.00 4.73
8 93.97 88.72(2.18) 84.53 94.05 8.00 5.87
12 93.52 88.67(2.83) 84.31 94.27 12.00 5.97

Best configuration - 10-fold cross-validation

50 × 1 3 8 94.09 88.03(5.36) 86.70 89.92 16.00 5.08

Spec =
TN

(TN + FP )
(5)

where FP is the number of false positives – Type
1 error – corresponding to the classification of a
benign sample as malignant.

4 Experimental setup

4.1 CGPANN parameters

The first part of the experiment involves the evolution
of genotypes under two random architectures [1× 50]
and [1× 100], where rows = 1 and columns = 50 and
100, respectively, and with different parameter set-
tings. The intent of having a single row is to have



a fully connected feedforward network - a standard
CGP configuration. The number of inputs to each
neuron IE were 3 and 6 and the number of outputs
Op were 2, 4 and 8, respectively. A (1 + 9)-ES, with
λ = 9, and a mutation rate of 0.1% was used in all of
the simulations, similar to (Khan et al. 2013). Each
network was evolved for 50,000 generations. The ac-
tivation functions used were sigmoid and hyperbolic
tangent. Table 2 shows the different configuration of
parameters for the network and their performance,
using a 70/30 split between training and testing sam-
ples. The table shows the figures for training accu-
racy, testing accuracy along with the standard devia-
tion of the accuracy of the 30 genotypes, sensitivity,
specificity, active neurons and the number of selected
features.

The results are averaged over 30 independent evo-
lutionary runs. The best result was with [1 × 100],
IE = 3 and Op = 4, with TrAcc = 92.59 and
TeAcc = 89.11. That configuration then proceeded
for further testing, now using 10-fold cross-validation.
Results indicate a training accuracy of 92.57% and a
testing accuracy of 87.15%, using the average for 30
independent runs of the cross-validation. Sensitivity
and specificity were 86.10% and 88.91%, respectively.

4.2 CGPWNN parameters

Similarly to CGPANN, two random CGPWNN ar-
chitectures [50 × 1] and [100 × 1] were used. The
number of columns was set to 1, as the number of
hidden layers in a wavelet neural network is also 1.
The number of inputs to each wavelon IE was set at
3 and 6; and the number of outputs Op were 4, 8 and
12. As in the previous case, a (1 + 9)-ES, with λ = 9,
and a mutation rate of 0.1% was used in all of the
simulations. Each network evolved for 50,000 genera-
tions. Wavelet functions used in the experiments were
Gaussian, Mexican hat and Haar wavelets. The net-
works were trained on 70% of the data and tested on
the remaining 30%, as before. The performance for
each network configuration is shown in Table 3 and
results represent the average of 30 independent evo-
lutionary runs. Similar parameters were also used to
train a modified version of CGPWNN - disabling di-
rect connection of input to the output. The intent was
to know whether input features modeled non-linearly
would perform better; results are shown in the same
table.

4.3 NEAT parameters

The main parameters used in NEAT for evolving neu-
ral network structure is shown in Table 4. The NEAT
classifier was trained under both 70% training, 30%
testing; and the 10-fold cross validation strategies.
Table 5 shows the result of each training and testing
set which is the average of 30 independent evolution-
ary runs.

5 Results and discussion

In Tables 2 and 3, there is no observable trend for
accuracy as the networks’ structure vary. Maximum
training and testing accuracies achieved by CGPANN
(from Table 2) are 93.57% and 89.11%. The max-
imum training accuracy of CGPWNN in Table 3 is
94.14% with a 100 × 1 structure with 6 inputs and
8 outputs. Analogously, the maximum testing accu-
racy was 89.57% with a network structure of 100× 1
with 6 inputs and 4 outputs. By disabling the di-
rect input connectivity to the output (see Table 3),

Table 4: NEAT algorithm parameters

Attribute Value

Population size 150
Speciation (c1, c2, c3) (1, 1, 0.4)
Crossover percentage 0.8
Mutation probability: Add node 0.03
Mutation probability: Add connection 0.05
Mutation probability: Recurrency 0.0
Mutation probability: Mutate weight 0.9

the maximum training accuracy was 94.59% with a
100 × 1 network with 3 inputs and 8 outputs; and
testing accuracy remained same i.e. 89.57% with a
50× 1 structure with 3 inputs and 8 outputs. These
results implies that the feature set can be modeled
either way.

As mentioned in Section 4, the network with the
maximum accuracy is used to train the data sam-
ples using 10-fold cross validation. Since 10-fold cross
validation is a considerably more robust test strat-
egy compared to training/testing split, we observed a
relatively small performance decrease. CGPANN at-
tained average testing accuracy of 87.15% (Table 2)
while CGPWNN and its modified version (Table 3)
obtained an average testing accuracy of 88.60% and
88.03%, respectively.

From Table 5, NEAT obtained training and test-
ing accuracies of 90.59% and 89.11%, respectively.
Both CGPANN and NEAT achieved the same accura-
cies, but the sensitivity of CGPANN was found to be
88.45% while that of NEAT was 86.67%. The 10-fold
cross validation again resulted in a small decrease in
the performance of the NEAT classifier to 84.63%. A
similar reduction in classification accuracy was also
observed in (McLeod & Verma 2011, Verma et al.
2009a).

Figure 5: Feature selection of the evolved neural net-
works, where patient age, mass margin and mass
shape were selected by the three algorithms all the
time.

Figure 5 shows a histogram of the features selected
using the networks (CGPWNN, CGPWNN-NL, CG-
PANN) with the best testing accuracy. The results
are averaged over 30 independent evolutionary runs

Table 5: Performance of NEAT using 70/30 split and
10-fold cross validation strategies.

Accuracy %

Strategy TrAcc TeAcc(σ) Sens Spec

70/30 split 90.59 89.11(3.02) 86.67 92.48

10-fold cross valid. 91.14 84.63(4.50) 85.55 85.93



Table 6: Performance of neuroevolutionary algo-
rithms in terms of number of evaluations and com-
putational time

Average number CPU time
Algorithm of evaluations (in hours)

CGPANN 171,090 2.96
CGPWNN 179,670 1.35
CGPWNN-NL 154,160 1.30

and shown as percentages. In CGPANN and CG-
PWNN most of the genotypes selected four features:
patient age, assessment, mass margin and mass shape
– similar to (Zhang & Kumar 2006); breast density
and subtlety were selected less often (approximately
60% of the time). Finally, CGPWNN - NL selected
3 features every time: patient age, mass margin and
mass shape. Thus, one can argue that those are the
most robust features from the features list, as they
are selected by all methods all the time.

In Table 2, it is also observed that the maximum
number of active neurons in the search space of 1×50
and 1×100 is 43.63%. Even though more than 57% of
the genotype represents inactive genes or junk nodes,
it has been shown that the presence of inactive genes
actually is useful to the efficiency of the evolutionary
process, due to the concept of neutrality (Miller &
Smith 2006, Vassilev & Miller 2000, Yu & Miller 2001,
2002). Active nodes are only involved in the compu-
tational process which implies lesser delays. By in-
creasing the number of outputs, the contribution of
neurons from the pool of resources increases (Table 2).

In CGPANN, the computational process cannot be
controlled via any genes (input, connection, weight,
function, output, etc). On the other hand, in CGP-
WNN, since the architecture is forcibly [n × 1], the
number of outputs ultimately controls the range of
active wavelons in the search space. From Table 3,
with increasing numbers of output nodes, the active
wavelons in the search space increases, restricted to
an upper limit of the total number of outputs; thus,
forcing the evolutionary process to search for opti-
mum solutions under a controlled computational en-
vironment.

A (1+9)-ES (used in our simulations) implies an
evaluation of 10 genotypes in each generation. Ta-
ble 6 shows the average number of evaluations for 30
independent evolutionary runs of CGPANN, CGP-
WNN and CGPWNN-NL genotypes with the max-
imum classification accuracy along with the aver-
age CPU time (in hours) to complete 50,000 gen-
erations. CGPWNN-NL has the lowest number of
evaluations, at 154,160, as compared to CGPANN
(171,090) and CGPWNN (179,670) and therefore, is
the fastest learning algorithm among the three. For
the average CPU time, the platform was a single core
CPU @3.40GHz with Windows-XP 64-bit. We can
clearly see that CGPANN took the longest time (2.96
hrs) in evaluating genotypes, while CGPWNN and
CGPWNN-NL took 1.35 hrs and 1.30 hrs, respec-
tively. That was somewhat expected, as in CGPWNN
computational delay is controlled via outputs; hence
the time required to complete the same number of
generations is shorter.

Even though CGPWNN requires less CPU time
compared to CGPANN, it still produces better and
equivalent accuracy results. The strength of CGP-
WNN is the wavelet functions and the CGP repre-
sentation itself. Such wavelet function modifies input

in a manner that has an equivalent effect of multiple
neurons together.

Table 7 shows the performance of different classi-
fiers in classifying the breast mass dataset. We can
see that the proposed classifiers have outperformed
most of the so-called standard classifiers, i.e. those
not based on clustering or ensemble architectures.

6 Conclusions

This work compared existing (CGPANN, NEAT) and
novel neuroevolutionary algorithms (CGPWNN) for
their ability to classify malignant and benign patterns
in digital mammograms.

CGPWNN achieved a classification accuracy of
89.57%, while CGPANN and NEAT reached 89.11%,
respectively. Three features were consistently selected
during the evolutionary process. Patient age, mass
margin and mass shape thus play an important role in
the correct classification of tumours. The CGPWNN
algorithm was also found to be less computationally
expensive and managed to search for higher quality
solutions faster, compared to the other approaches.

The proposed technique was also found to perform
comparatively to other techniques mentioned in liter-
ature and outperformed most of the standard classi-
fication algorithms.

Currently, a predefined structure for the search
space is provided to the algorithm. In our future re-
search, we intend to investigate a developmental form
of CGPWNN that would evolve with each time-step.
The performance of CGPWNN shall also be exploited
further by introducing an adaptive threshold gene and
the effect of having no bias. In addition, we plan
to test the algorithm on other biomedical benchmark
case studies.

7 Acknowledgments

We would like to acknowledge Dr. Ping Zhang, Re-
search Scientist at CSIRO, for sharing the dataset
features for research purposes.

References

Alexandridis, A. & Zapranis, A. (2013), ‘Wavelet neu-
ral networks: A practical guide’, Neural Networks
42, 1–27.

Beyer, H. & Schwefel, H. (2002), ‘Evolution strate-
gies: A comprehensive introduction’, Natural Com-
puting 1(1), 3–52.

Billings, S. A. & Wei, H. (2005), ‘A new class
of wavelet networks for nonlinear system identi-
fication’, IEEE Transactions on Neural Networks
16(4), 862–874.

Breast Cancer Care WA; accessed June (2014), http:
//www.breastcancer.org.au/.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone,
C. J. (1984), Classification and Regression Trees,
Pacific Grove:Wadsworth, Belmont, CA.

Byun, H. & Lee, S.-W. (2002), Applications of sup-
port vector machines for pattern recognition: A
survey, in ‘Proceedings of the First International
Workshop on Pattern Recognition with Support
Vector Machines’, SVM ’02, Springer-Verlag, Lon-
don, UK, pp. 213–236.



Table 7: Comparison of different classifiers on the DDSM using 6 features

Algorithm Accuracy(%) Sensitivity Specificity References

Standard classifiers

LCA 87.00 80.50 93.90 (Pour et al. 2012)
AANN 91.00 90.00 92.00 (Panchal & Verma 2006)
SVM 87.50 88.40 91.60 (McLeod & Verma 2011)
K-means 84.50 – – (Verma et al. 2009b)
SOM 76.00 – – (Verma et al. 2009b)
NN 90.00 91.60 88.40 (Pour et al. 2012)
CART 91.00 – – (Kumar, Zhang, & Verma 2006)
C5.0 89.00 – – (Kumar, Zhang, & Verma 2006)
GANN 89.00 – – (Kumar, Zhang, & Verma 2006)
BPNN 88.00 – – (Kumar, Zhang, & Verma 2006)

Ensemble & clustering classifiers

SCBDL 97.50 97.50 97.50 (Verma et al. 2009a)
SCNN 94.00 97.83 90.74 (Verma et al. 2009b)
MCSVM 94.50 94.00 94.00 (McLeod & Verma 2011)
NN Ensemble 99.00 – – (McLeod & Verma 2013a)
LCA Ensemble 94.00 82.70 95.20 (Pour et al. 2012)

Neuroevolutionary classifiers

CGPANN 89.11 88.45 92.00 -
CGPWNN 89.57 84.90 95.64 -
CGPWNN-NL 89.57 85.38 94.38 -
NEAT 89.11 86.67 92.48 -

Cao, L., Hong, Y., Fang, H. & He, G. (1995), ‘Pre-
dicting chaotic time series with wavelet networks’,
Physica D85, 225–238.

Chen, Y., Yang, B. & Dong, J. (2006), ‘Time-
series prediction using a local linear wavelet neural
wavelet’, Neurocomputing 69, 449–465.

Digital Database for Screening Mammography; ac-
cessed May (2014), http://marathon.csee.usf.
edu/Mammography/Database.html.

Fang, Y. & Chow, T. (2006), Wavelets based neural
network for function approximation, in ‘Advances
in Neural Networks ISNN, Lecture Notes in Com-
puter Science (LNCS)’, Vol. 3971, Springer Berlin
Heidelberg, pp. 80–85.

Hasiewicz, Z. (1997), Wavelet neural network for den-
sity estimation, in ‘Proceedings of Third Confer-
ence on Neural Networks and Their Applications’,
pp. 136–141.

Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, W.,
, Moore, R.and Chang, K. & MunishKumaran, S.
(1998), Current status of the digital database for
screening mammography, in ‘Proceedings of the
Fourth International Workshop on Digital Mam-
mography’, Kluwer Academic Publishers, pp. 457–
460.

Heath, M., Bowyer, K., Kopans, D., Moore, R. &
Kegelmeyer, W. (2001), The digital database for
screening mammography, in ‘Proceedings of the
Fifth International Workshop on Digital Mammog-
raphy’, Medical Physics Publishing, pp. 212–218.

Kadambe, S. & Srinivasan, P. (2006), ‘Adaptive
wavelets for signal classification and compression’,
International Journal of Electronics and Commu-
nications 60, 45–55.

Khan, M., Khan, G., Ahmad, A. & Miller, J. (2013),
‘Fast learning neural networks using cartesian ge-
netic programming’, Neurocomputing 121, 274–
289.

Kumar, K., Zhang, P., & Verma, B. (2006), Appli-
cation of decision trees for mass classification in
mammography, in ‘2nd International Conference
on Natural Computation , Advances in Natural
Computation and Data Mining’, Xidian University
Press, China, pp. 365–375.

Kumar, K., Zhang, P. & Verma, B. (2006), Applica-
tion of decision trees for mass classification in mam-
mography, in ‘Proceedings of Advances in Natural
Computation and Data Mining’, Xidian University
Press, China, pp. 365–375.

McLeod, P. & Verma, B. (2010), A classifier with clus-
tered sub classes for the classification of suspicious
areas in digital mammograms, in ‘International
Joint Conference on Neural Networks (IJCNN)’,
IEEE, Barcelona, pp. 1–8.

McLeod, P. & Verma, B. (2011), Multi-cluster sup-
port vector machine classifier for the classifica-
tion of suspicious areas in digital mammograms,
in ‘International Journal of Computational Intelli-
gence and Applications’, Vol. 10(4), Imperial Col-
lege Press, pp. 481–494.

McLeod, P. & Verma, B. (2012a), Clustered ensem-
ble neural network for breast mass classification in
digital mammography, in ‘World Congress on Com-
putational Intelligence (WCCI)’, IEEE, Brisbane
Australia, pp. 1–6.

McLeod, P. & Verma, B. (2012b), A multilayered en-
semble architecture for the classification of masses
in digital mammograms, in ‘AI 2012: Advances
in Artificial Intelligence - 25th Australasian Joint
Conference’, Vol. 7691, Springer Berlin Heidelberg,
Sydney, Australia, pp. 85–94.

McLeod, P. & Verma, B. (2013a), Effects of large
constituent size in variable neural ensemble clas-
sifier for breast mass classification, in ‘Neural In-
formation Processing - 20th International Confer-
ence ICONIP’, Vol. 8228, Springer Berlin Heidel-
berg, Daegu, Korea, pp. 525–532.



McLeod, P. & Verma, B. (2013b), Variable hidden
neuron ensemble for mass classification in digi-
tal mammograms, in ‘IEEE Computational Intelli-
gence Magazine’, Vol. 8(1), IEEE, pp. 68–76.

Miller, J. & Smith, S. (2006), ‘Redundancy and com-
putational efficiency in cartesian genetic program-
ming’, IEEE Transactions on Evolutionary Com-
putation 10(2), 167–174.

Miller, J. & Thomson, P. (2000), Cartesian genetic
programming, in ‘European Conference on Genetic
Programming, Lecture Notes in Computer Science
(LNCS)’, Vol. 1802, Springer-Verlag, pp. 121–132.

Muhlenbein, H. (1990), ‘Limitations of multi-layer
perceptron networks - steps towards genetic neu-
ral networks’, Parallel Computing 14(3), 249–260.

Panchal, R. & Verma, B. (2006), ‘Neural classification
of mass abnormalities with different types of fea-
tures in digital mammograms’, International Jour-
nal of Computational Intelligence and Applications
6(1), 61–75.

Pour, S., McLeod, P., Verma, B. & Maeder, A. (2012),
Comparing data mining with ensemble classifica-
tion of breast cancer masses in digital mammo-
grams, in ‘Second Australian Workshop on Arti-
ficial Intelligence in Health: AIH 2012, held in con-
junction with the 25th Australasian Joint Confer-
ence on Artificial Intelligence’, The Netherlands,
Tilburg University, Sydney, Australia.

Quinlan, J. (1993), C4.5: Programs for Machine
Learning, Morgan Kaufmann, ISBN 1-55860-238-0.

RuleQuest-Research (2014), ‘C5.0: An informal tu-
torial; accessed august’, http://www.rulequest.
com/see5-unix.html.

Stanley, K. & Miikkulainen, R. (2002), Efficient re-
inforcement learning through evolving neural net-
work topologies, in ‘GECCO’, Vol. 9, San Fran-
cisco, Morgan Kaufmann, pp. 567–577.

Steinberg, D. & Colla, P. (1997), CART - Classifica-
tion and Regression Trees, San Diego, CA:Salford
Systems.

Steinberg, D. & Golovnya, M. (2006), CART 6.0
User’s Manual, San Diego CA:Salford Systems.

Subasi, A., Alkan, A., Koklukaya, E. & Kiymik, M. K.
(2005), ‘Wavelet neural network classification of eeg
signals by using ar model with mle pre-processing’,
Neural Networks 18, 985–997.

Vassilev, V. & Miller, J. (2000), The advantages
of landscape neutrality in digital circuit evolu-
tion, in ‘International Conference on Evolvable Sys-
tems,Lecture Notes in Computer Science (LNCS)’,
Vol. 1801, Springer, pp. 252–263.

Verma, B. (2008), ‘Novel network architecture and
learning algorithm for the classification of mass ab-
normalities in digitized mammograms’, Artificial
Intelligence in Medicine 42(1), 67–79.

Verma, B., McLeod, P. & Klevansky, A. (2009a),
‘Classification of benign and malignant patterns
in digital mammograms for the diagnosis of
breast cancer’, Expert Systems with Applications
37(4), 3344–3351.

Verma, B., McLeod, P. & Klevansky, A. (2009b), ‘A
novel soft cluster neural network for the classifica-
tion of suspicious areas in digital mammograms’,
Pattern Recognition 42(9), 1845–1852.

Yu, T. & Miller, J. (2001), Neutrality and the evolv-
ability of boolean function landscape, in ‘Euro-
pean Conference on Genetic Programming, Lecture
Notes in Computer Science (LNCS)’, Vol. 2038,
Springer, pp. 204–217.

Yu, T. & Miller, J. (2002), Finding needles in
haystacks is not hard with neutrality, in ‘Euro-
pean Conference on Genetic Programming, Lecture
Notes in Computer Science (LNCS)’, Vol. 2278,
Springer, pp. 13–25.

Zhang, P., Doust, J. & Kumar, K. (2010), Presenting
a simplified assistant tool for breast cancer diag-
nosis in mammography to radiologists, in ‘Medi-
cal Biometrics - Second International Conference
ICMB’, Vol. 6165, Springer, Hong Kong China,
pp. 363–372.

Zhang, P. & Kumar, K. (2006), Analyzing feature
significance from various systems for mass diagno-
sis, in ‘International Conference on Computational
Intelligence for Modelling Control and Automation
and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce (CIMA-
IAWTIC)’, IEEE, pp. 141–146.

Zhang, P., Kumar, K. & Verma, B. (2005), A hybrid
classifier for mass classification with different kinds
of features in mammography, in ‘Fuzzy Systems
and Knowledge Discovery - Second International
Conference, FSKD’, Vol. 3614, Springer, Chang-
sha, China, pp. 316–319.

Zhang, P., Verma, B. & Kumar, K. (2005), Neural vs.
statistical classifier in conjunction with genetic al-
gorithm based feature selection, in ‘Pattern Recog-
nition Letters’, Vol. 26(7), pp. 909–919.

Zhang, Z. (2007), ‘Learning algorithm of wavelet net-
work based on sampling theory’, Neurocomputing
71(1), 224–269.


